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Abstract 
 

Changes in soil systems can occur during the implementation of long-term agronomic practices and consequently result in 

different N2O emissions in response to external environment. Therefore, an incubation study was conducted using Fluvisols 

from a 30-yr fertilization experiment to assess N2O emissions produced because of the nitrogen (N) and nitrification inhibitor 

(NI) addition. Different soils were sampled from four fertilization treatments: no fertilizer (NF), chemical NPK fertilizer 

(NPK), organic manure (M) and chemical NPK fertilizer plus manure (NPKM). The results showed that effects of N and NI 

additions on N2O emissions were significantly different among the different soils. The highest stimulation on N2O emission 

with N addition was observed in soil with long-term NPK fertilization regime (10.2 times), while the lowest reduction on N2O 

emission due to NI addition in soil with long-term M fertilization (27.7%). The regression analysis showed that increase rate 

of N2O emission caused by N addition and decrease rate by NI was negatively related to soil organic carbon (SOC) 

concentration. Our findings indicated that response of N2O emissions to N and NI additions were different under different 

long-term fertilization regimes in Fluvisols, mainly resulting from the difference of soil organic matters. © 2022 Friends 

Science Publishers 
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Introduction  
 

Nitrous oxide (N2O) is the third important greenhouse gas 

(GHG) which contributes 6~8% to current global warming 

(Smith et al. 2007). Additionally, N2O concentration can 

also increase atmospheric PM 2.5 accumulation and 

aggravate stratospheric O3 depletion (Ravishankara et al. 

2009; Huang et al. 2014). Agriculture accounting for ∼60% 

of the global anthropogenic N2O emissions (IPCC 2013), is 

projected to increase by 60% in 2050 in order to satisfy the 

food needs of the growing population (FAO 2013). It is 

necessary to carry out the appropriate agricultural 

management, which can mitigate GHG emissions and 

maintain crop production simultaneously. 

Soil N2O is produced mainly by microbial nitrification 

and denitrification processes (Bouwman 1998; Zhu et al. 

2013; Zhang et al. 2018). The soil physical, chemical and 

microbial characteristics have been observed to change 

significantly with different long-term agricultural 

management practices (García-Orenes et al. 2009; Zhang et 

al. 2012), and these changes could affect N2O emissions in 

response to the external disturbance, such as temperature 

(Coudrain et al. 2016). Nitrogen (N) and nitrification 

inhibitor (NI) are both external disturbance that can 

significantly affect N2O emissions from agricultural soils. 

Generally, application of N fertilizer can increase soil N2O 

emissions in a nonlinear trend (Hoben et al. 2011; 

Shcherbak et al. 2014; Hoa et al. 2018). Nitrification 

inhibitors can inhibit NH4
+ oxidation to NO2

- through 

slowing the genus of nitrifying bacteria and nitrosomonas, 

reduce NO3
- concentration, and may thus reducing N2O 

emissions (Abbasi and Adams 2000; Zhu et al. 2019; 
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Borzouei et al. 2021). As reported previously in meta-

analysis, response of soil N2O emissions to the N and NI 

additions was different along with climate factors, cropping 

systems or soil conditions (Shcherbak et al. 2014; Li et al. 

2018). To the best of our knowledge, however, information 

on how the different soil ecosystems affect N2O emissions 

in response to N and NI additions in a specific site with the 

same environment conditions is still limited. 

Fertilization is a key agricultural practice that would 

have a long-term impact and significantly affect the soil 

ecosystem (Geisseler and Scow 2014; Wen et al. 2020). 

Previously, we found the significant difference in soil 

microbial biomass, pH, organic carbon and nitrogen under 

treatments of chemical fertilizer and manure after a 30-yr 

field experiment (Zhang et al. 2017). It was hypothesized 

that effects of N and NI additions on N2O emissions would 

be different in soil after long-term different fertilization. 

Therefore, a laboratory incubation study was conducted to 

investigate the differences in N2O emissions resulting from 

the additions of N and NI to the soils under different long-

term fertilization regimes. 

 

Materials and Methods 
 

Soil sampling and analysis 

 

The long-term fertilization experiment was initiated in 1983 

at the Institute of Agricultural Sciences in Xiao County, 

Anhui Province, China (34°18′ N, 116°53′ E). The climate 

and soil characteristics and the experimental design of this 

site have been described in our previous study (Zhang et al. 

2017). The fertilization regimes selected in the present study 

were no fertilizer (NF), chemical NPK fertilizer (NPK), 

organic manure (M), and chemical NPK fertilizer plus 

manure (NPKM). The total amount of nitrogen input in each 

fertilization regime was 240 kg ha-1, while phosphorus and 

potassium were not unified. Chemical N, P and K fertilizers 

used in this experiment were urea, superphosphate, and 

potassium sulphate, respectively, and cattle manure was 

used for the M and NPKM regimes. The application 

amounts of different fertilizers in each treatment are shown 

in Table 1. 

We collected fresh soils from 0–20 cm layer in the 

field after soybean harvest in 2015. In each plot, five 

randomly sampled soil cores were taken and mixed to one 

sample. The samples were passed through 2 mm sieve and 

stored at 4°C for further processing. A portion of the soil 

samples were air dried for the measurement of basal 

properties. Part of the air-dried samples was ground for the 

determination of soil organic carbon (SOC) using the 

potassium dichromate oxidation-redox titration method 

(Nelson and Sommers 1982). 

 

Soil incubation and gas sampling 

 

Laboratory incubation experiment was conducted in 

Chinese Academy of Agricultural Sciences (40.0°N, 

116.3°18’E), Beijing, China. Six aliquots (100 g) from 

composite field samples of each plot were drawn and placed 

in 500-mL glass jars. The incubation treatments were soil 

only (CK), soil with urea (U), and soil with urea and 

nitrification inhibitor 3,4-dimethyl pyrazole phosphate 

(DMPP, UNI). For the U treatment, 0.05 g urea was added 

into each jar. For the UNI, 0.05 g urea and 0.3 mg DMPP 

were added in each jar. There were six jars for each 

treatment, three for gas sampling and other three for soil 

chemical properties determination. Before the incubation 

treatment, the soil microcosms were pre-incubated under 

25°C in the dark for one week to stabilize the microbial 

activity (Zhang et al. 2015). And then, all of the soil 

microcosms were kept on incubation in the dark at 25°C 

after the jars were sealed with air permeable plastic film. 

During the incubation period, deionized water was added at 

regular intervals to keep soil moisture at 60% water holding 

capacity (WHC). 

N2O fluxes in the incubation studies were measured 

every day for three consecutive days and every 2 or 3 days 

afterwards, until the fluxes under U and UNI treatments 

were no different from the CK (12 days totally). On each 

sampling occasion, three glass jars of each treatment were 

sealed with airtight rubber plugs and then incubated for 2 h 

in the dark at 25°C. The rubber plugs were fitted with 

three-way valves to allow for headspace gas sampling. 

Before and after the 2-h airtight incubation, a 30-mL gas 

sample was taken from each jar using an airtight syringe. 

The sampled headspace N2O concentrations in the jars 

were determined with a gas chromatograph (GC, Agilent 

7890A, USA). The N2O fluxes were calculated as the linear 

increased rate of concentration during the 2 h. Cumulative 

N2O emissions over the incubation period were determined 

by multiplying each gas flux with the interval between 

sampling dates. 
 

Effects of N and NI additions on N2O emissions 
 

The effects of N and NI additions on N2O emissions in the 

different soils were calculated as the follows: 
 

Effect of N addition on N2O emissions = (U - CK)/CK × 100% (1) 
 

Effect of NI addition on N2O emissions = (U - UNI)/U × 100% (2) 

 

Soil measurement 

 

On 6th day of the incubation, three soil microcosms for soil 

properties determination in each treatment was destructively 

sampled and passed through a 2-mm sieve for the 

measurement of soil available nitrogen, nitrification and 

denitrification potential. NH4-N and NO3-N concentrations 

extracted by potassium chloride solution were analyzed with 

the continuous flow analyzer (TRAACS 2000, Germany). 

Soil nitrification and denitrification potentials were 

measured following the techniques described by Šimek and 

Kalčík (1998) and Chu et al. (2007), respectively. 
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Statistical analysis 
 

The means and standard error for each data set were 

calculated from triplicate plots while Microsoft Excel 2003 

was used for basic data calculation and drawing of graphs. 

All statistical analyses were carried out using SAS system 

(SAS 9.2, USA). Differences in treatments were evaluated 

using analysis of variance (Proc Anova) and significance 

among treatment means using the least significant difference 

(LSD). Proc Reg was used to do the linear regression 

analysis of N2O emissions in response to N and NI additions 

upon soil organic carbon. 

 

Results  
 

Dynamics of N2O fluxes during the incubation period 

 

The application of urea increased N2O fluxes from the 

fertilizer treatments as compared to CK (Fig. 1). Urea 

application increased N2O fluxes significantly in the 1st and 

2nd day, and subsequently decreased continuously till no 

difference were observed in comparison with the CK. The 

application of urea with nitrification inhibitor (i.e., UNI 

treatment) decreased N2O fluxes compared to urea (U) 

treatment under all the fertilization regimes, with almost 

similar time trends to N2O fluxes in urea (U) treatment. 

Effects of N and NI additions on N2O emissions and 

their relationship with SOC under different fertilization 

regimes 

 

Application of urea (U) significantly increased N2O 

emissions in comparison with CK, while nitrification 

inhibitor application (UNI) significantly decreased N2O 

emissions compared to urea (U) treatment (Fig. 2a, P < 

0.05). Under different fertilization regimes, various effects 

of N and NI additions on N2O emissions were observed. 

Compared to CK, N2O emissions were increased by 543, 

1023, 537 and 365%, under fertilization treatments of NF, 

NPK, M and NPKM (Fig. 2b), respectively. Moreover, the 

increase rate of N2O emission under NPK treatment was 

significantly higher than other fertilization treatments (P < 

0.05). Compared to urea (U) treatment, decrease rate of N2O 

emissions in UNI were 56.9, 79.9, 27.7 and 60.3%, 

respectively, under fertilization treatments of NF, NPK, M 

and NPKM (Fig. 2c). In addition, the decrease rate of N2O 

emission under M treatment was significantly lower than 

those under other fertilization treatments (P < 0.05). 

Increase rate of N2O emissions in U compared to CK 

was negatively related to SOC (Fig. 3a), though the 

relationship was not significant. Decrease rate of N2O 

emissions in UNI compared to U treatment was negatively 

related to SOC (Fig. 3b, P < 0.01). 

Table 1: The application amounts of fertilizers and their total pure nutrient contents of N, P, and K under different long-term 

fertilization regimes 

 
 Application amounts of fertilizers in kind (kg ha-1) Pure nutrient contents in total (kg ha-1)  

Treatments Manure Urea Superphosphate Potassium sulphate N P K 
NF 0 0 0 0 0 0 0 

NPK 0 522 1338 267 240  335  120  

M 75000 0 0 0 240  188  113  
NPKM 37500 261 669 134 240  261  116 
Treatments of NF, NPK, M and NPKM represent no fertilizer application, sole organic manure, balanced chemical fertilizer and chemical NPK plus manure, respectively 

 

 
 

Fig. 1: Response of N2O fluxes to N and nitrification inhibitor (NI) additions in soils under different long-term fertilization: (a) NF; (b) 

NPK; (c) M; (d) NPKM. Vertical bars indicate the standard error (n = 3) 
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Effects of N and NI additions on soil NO3-N content, 

nitrification and denitrification potential under different 

fertilization regimes 

 

Urea (U) treatment significantly increased NO3-N content in 

comparison with CK, and urea + nitrification inhibitor (UNI) 

treatment significantly decreased NO3-N content in 

comparison with urea (U) (Fig. 4b, P < 0.05), with various 

impacting amplitudes under different fertilization regimes. 

Increase of NO3-N content under NPK treatment was higher 

than both M and NPKM treatments when urea was added. 

Urea (U) treatment significantly increased nitrification 

potential in comparison with CK, while nitrification 

inhibitor (UNI) treatment significantly decreased 

nitrification potential in comparison with urea (U), with 

various impacting amplitudes under different fertilization 

regimes (Fig. 4c, P < 0.05). Increase of nitrification 

potential under M treatment was lower compared to other 

fertilization treatments when urea was added. Although 

fertilization treatments of M and NPKM significantly 

increased soil denitrification potential, N and NI additions 

had no effect on soil denitrification (Fig. 4d). 

 

Discussion 
 

The results showed that application of urea significantly 

increased N2O emissions in comparison with CK, with the 

various effects under different fertilization regimes. 

According to Geisseler and Scow (2014) and Zhang et al. 

(2017) and Yang et al. (2019), long-term different 

fertilization would change the physical, chemical and 

microbial characters of soil, and may affect the response of 

N2O emissions to N addition. In the present study, 

significant differences in soil organic carbon, nitrogen and 

pH were observed among the fertilization regimes (data not 

shown), indicative of variation in the soil ecosystems after 

long-term fertilizer application. Moreover, regression 

analysis showed the increase rate was negatively related to 

SOC. The observed increase in N2O emission under NPK 

was higher than under M and NPKM fertilization regimes. 

It can be attributed to the sorption of NH4
+ onto soil organic 

matters (Fernando et al. 2005). Soil organic matter content 

was significantly higher in fertilization regimes of organic 

amendment (i.e., M and NPKM regimes) compared to NPK 

regime. When urea added to soil, NH4
+ hydrolyzed from 

urea might be absorbed by soil organic matters, then the 

NO3
- would thereupon decrease, which is confirmed by the 

lower increase rate of NO3-N content in urea (U) treatment 

compared to CK under fertilization regimes of M and 

NPKM (Fig. 4b). 

It was also found that application of nitrification 

inhibitor significantly reduced soil N2O emissions, as 

previously reported in earlier studies of upland field (Tian et 

al. 2015; Guardia et al. 2017; Recio et al. 2019), with 

different reduction rate under various fertilization regimes. 

Regression analysis showed the decrease rate was negatively 

related to SOC content. The decrease rate of N2O emission 

under regime with manure was significantly lower than 

under other fertilization regimes (P < 0.05). One of the 

mechanisms can be that high organic matter could null the 

nitrification inhibitor through adsorption (Jacinthe and 

Pichtel 1992; Asgedom et al. 2014). Fertilization regime of 

manure has the highest organic matter, which can greatly 

hinder the nitrification inhibitor, and thus got lower reduction 

rate of N2O emission. Another reason might be the difference 

of soil microbes among different fertilization treatments. The 

nitrification and denitrification potential under fertilization 

regime of manure was higher than NPK, indicating greater 

microbial activities related to N2O emissions. After 

application of nitrification inhibitor, decrease rate of these 

microbial properties was lower in manure regime, which in 

turn caused lower reduction of N2O emissions. 
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Fig. 2: Effects of N and NI additions on N2O emissions in soils 

under different long-term fertilization regimes. (a) Cumulative 

N2O emissions; (b) Increase rate of N2O emissions in response to 

N addition; (c) Decrease rate of N2O emissions in response to NI 

addition. Vertical bars indicate the standard error (n = 3). Different 

lowercase letters indicate significant difference between 

incubation treatments at P < 0.05 
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In the present study, N and NI additions had 

significant effects on N2O emissions. However, the response 

of related nitrifiers and denitrifiers in soils from different 

long-term fertilization was not clear, which needs further 

investigation. Besides, it is considered that gaseous N is 

closely related to global warming, i.e., N2O in this study. 

However, there is other important gaseous N such as N2, 

also being product of denitrification process (Poth 1986), 

which need to be considered. Moreover, the leaching of 

NO3-N during N conversion should not be neglected. After 

addition of N or inhibitor, the turnover of external and 

endogenous N can be further investigated by 15N isotope 

labeling. 

Conclusion 
 

A significantly different response of N2O emissions to N 

and NI additions from Fluvisols under different long-term 

fertilization regimes. N addition significantly increased N2O 

emissions, with the highest increase rate in the soil of long-

term NPK fertilization and the lowest increase rate in the 

soil of long-term NPKM fertilization. NI addition 

significantly decreased N2O emissions, with the lowest 

decrease rate in the soil of long-term M fertilization. Those 

differences of N2O emissions in response to N and NI 

additions were mainly resulted from the difference of soil 

organic matters. It can be concluded that for soils with lower 
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Fig. 3: Linear regressions of N2O emissions in response to N (a) and NI (b) additions upon soil organic carbon (SOC) content. * 

represents the significant regression at P < 0.05 
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Fig. 4: Impacts of N and NI additions on NH4-N concentration (a), NO3-N concentration (b), nitrification potential (c) and denitrification 

potential (d) in soils under different long-term fertilization. Vertical bars indicate the standard error (n = 3). Different lowercase letters 

indicate significant difference between incubation treatments at P < 0.05 
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organic matter content, chemical N fertilizer addition would 

cause more N2O emissions; nevertheless, addition of NI had 

higher effects on N2O emissions from these soils. Therefore, 

the application of nitrification inhibitor in field with lower 

soil organic matter (e.g., soils after long-term chemical NPK 

fertilization) is recommended, to better mitigate the global 

warming potential. 
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